tedana.metrics.dependence.calculate_f_maps
- calculate_f_maps(*, data_cat: ndarray, z_maps: ndarray, mixing: ndarray, adaptive_mask: ndarray, tes: ndarray, n_independent_echos=None, f_max: float = 500) Tuple[ndarray, ndarray, ndarray, ndarray] [source]
Calculate pseudo-F-statistic maps for TE-dependence and -independence models.
- Parameters:
data_cat ((M x E x T) array_like) – Multi-echo data, already masked.
z_maps ((M x C) array_like) – Z-statistic maps for components, reflecting voxel-wise component loadings.
mixing ((T x C) array_like) – Mixing matrix
adaptive_mask ((M) array_like) – Adaptive mask, where each voxel’s value is the number of echoes with “good signal”. Limited to masked voxels.
tes ((E) array_like) – Echo times in milliseconds, in the same order as the echoes in data_cat.
n_independent_echos (int) – Number of independent echoes to use in goodness of fit metrics (fstat). Primarily used for EPTI acquisitions. If None, number of echoes will be used. Default is None.
f_max (float, optional) – Maximum F-statistic, used to crop extreme values. Values in the F-statistic maps greater than this value are set to it.
- Returns:
f_t2_maps, f_s0_maps, pred_t2_maps, pred_s0_maps ((M x C) array_like) – Pseudo-F-statistic maps for TE-dependence and -independence models, respectively.