tedana.metrics.dependence

Metrics evaluating component TE-dependence or -independence.

Functions

calculate_betas(*, data, mixing)

Calculate unstandardized parameter estimates between data and mixing matrix.

calculate_dependence_metrics(*, f_t2_maps, ...)

Calculate Kappa and Rho metrics from F-statistic maps.

calculate_f_maps(*, data_cat, z_maps, ...[, ...])

Calculate pseudo-F-statistic maps for TE-dependence and -independence models.

calculate_psc(*, data_optcom, optcom_betas)

Calculate percent signal change maps for components against optimally-combined data.

calculate_varex(*, optcom_betas)

Calculate unnormalized(?) variance explained from unstandardized parameter estimate maps.

calculate_varex_norm(*, weights)

Calculate normalized variance explained from standardized parameter estimate maps.

calculate_weights(*, data_optcom, mixing)

Calculate standardized parameter estimates between data and mixing matrix.

calculate_z_maps(*, weights[, z_max])

Calculate component-wise z-statistic maps.

compute_countnoise(*, stat_maps, stat_cl_maps)

Count the number of significant voxels from non-significant clusters.

compute_countsignal(*, stat_cl_maps)

Count the number of significant voxels in a set of cluster-extent thresholded maps.

compute_dice(*, clmaps1, clmaps2[, axis])

Compute the Dice similarity index between two thresholded and binarized maps.

compute_signal_minus_noise_t(*, z_maps, ...)

Compare signal and noise t-statistic distributions with a two-sample t-test.

compute_signal_minus_noise_z(*, z_maps, ...)

Compare signal and noise z-statistic distributions with a two-sample t-test.

generate_decision_table_score(*, kappa, ...)

Generate a five-metric decision table.

threshold_map(*, maps, mask, ref_img, threshold)

Perform cluster-extent thresholding.

threshold_to_match(*, maps, n_sig_voxels, ...)

Cluster-extent threshold a map to target number of significant voxels.